Wie funktioniert der SLA 3D Druck

Was ist das SLA Verfahren im 3D-Druck?

Bedeutung SLA 3D Druck Verfahren

«Stereolithografie», abgekürzt SLA, bedeutet frei übersetzt zweiteiliges Schreiben mit Flüssigkeit. Dabei bezieht sich das «zweiteilig» (Stereo) darauf, dass dieses Verfahren zwei Komponenten benötigt: Zum einen das flüssige Ausgangsmaterial (Resin genannt) und zum anderen eine UV-Lichtquelle. Das UV-Licht braucht es, um den Polymerisierungsvorgang zu initiieren. Im klassischen SLA verwendet man dazu einen UV-Laser mit einer Wellenlänge von 403 nm. Es gibt aber auch Anwendungen, bei denen ein LCD-, LED-Display oder ein DLP-Projektor zum Einsatz kommt.

Hauchdünne Layer

Beim SLA Verfahren «zeichnet» der Laser die Form der aktuellen Schicht durch die Flüssigkeit auf die Platte. Mit SLA gefertigte Bauteile zeichnen sich besonders dadurch aus, dass sie aus extradünnen Schichten aufgebaut sind. Der flüssige Zustand des Baumaterials lässt zudem äusserst kleine Details zu. Der Durchmesser des Lasers bestimmt dabei die Detailgenauigkeit.

Da dieses Verfahren keine thermische Energie verwendet, kann man Mini-Bauteile herstellen, welche in thermischen Verfahren (DLM, FDM, SLS) durch die Hitzeeinbringung überhitzen und dann schmelzen würden.

Ausgereifte Technologie

SLA ist das erste 3D-Druckverfahren, das entwickelt wurde. 1984 erfunden und drei Jahre später in den Markt eingeführt, wurde die SLA-Technologie stetig weiterentwickelt. Entsprechend ausgereift ist dieses 3D-Druckverfahren heute.

Stützmaterial

Für den SLA 3D-Druck verwendet man flüssiges Resin, folglich bestehen die Stützmaterialien aus demselben Material, wie das Bauteil. Die Stützmaterialien sind dabei fest mit dem Bauteil verbunden. Nach der Fertigung muss der Techniker die Stützen deshalb manuell entfernen und die Oberfläche an den Anbindungspunkten sauber schleifen. Um die Rückstände auf dem Bauteil so gering wie möglich zu halten, haftet die Stützstruktur nur mit einer dünnen Spitze am Bauteil, diese Spitze dient als Sollbruchstelle.

Starke Layer-Haftung

Da die Schichten einen chemischen Polymerisierungsprozess durchlaufen, härten die Bauteile während des Druckvorgangs nur zu 70 % aus. Dadurch kann sich die jeweils nächste Schicht, mit der darunterliegenden Schicht chemisch verbinden. Das macht SLA zu dem Verfahren, mit der besten Schichthaftung. Das Bauteil ist somit in alle Achsenrichtungen gleich stark, weist also isotropische Eigenschaften auf.

Wie funktioniert der SLA 3D Druck?

Slicing Software

Das 3D-Modell eines Bauteils lädt man in eine Slicing Software, welche es in Schichten zerlegt. Die Software erzeugt den Maschinencode und legt die Layer-Stärke das Bauteils fest (0.025 – 0.1 mm). Der Laser zeichnet danach den Weg durch das Resin.

Orientierung in der Slicing Software

In der Slicing Software wird das Bauteil zudem orientiert, so entsteht die Aufbaurichtung des Bauteils. Die Orientierung entscheidet massgeblich über die Qualität des Bauteils. Grosse Bauteile werden ausgehöhlt, da solide Bauteile erstens sehr viel mehr Material brauchen würden (Kosten!) zu fest an dem Druckbehälter kleben würden und sie den ganzen Druckprozess zum Abstürzen bringen können.

Stützmaterial

Eine Stützstruktur ist dann nötige, wenn das Bauteil einen Überhang von mehr als 45° besitzt und sich folglich weder mit dem Bauteil noch mit der Druckplatte verbinden kann und abbricht. In der Slicing Software werden die Stützstrukturen automatisiert gefertigt. Nachdem die Software alles berechnet hat, sendet sie den Programmcode an die SLA 3D-Druck Maschine.

SLA 3D-Druck Vorgang

Eine Druckplatte fährt nun von oben in einen mit Flüssigkeit gefüllten Behälter mit durchsichtigem Boden. Die Druckplatte stoppt in der eingestellten Schichtstärke über dem transparenten Boden des Behälters. Der Laser «schreibt» nun – von unten (Bottom-up) die Schicht durch die transparente Druckplatte und das flüssige Material auf die Druckplatte. Sobald der Laser durch das Material durchscheint, polymerisiert (härtet) das Material sofort. Die Platte wird jetzt um die Schichtstärke angehoben und der Vorgang wiederholt sich, sodass sich die neue Schicht mit der Letzteren verbinden kann. Dies ist noch mal ein Grund für die Stützstrukturen. Sollte eine Schicht Teile enthalten, für die keine darüberliegende Schicht existiert, würde dieses Detail auf der transparenten Schicht liegen bleiben. Die Stützmaterialien werden deshalb vorher schon mitgedruckt, damit die Schicht sich daran festkleben kann.

Reinigung

Nachdem das Bauteil in der Maschine fertig gedruckt ist, nimmt der Techniker die Druckplatte mit dem Bauteil aus dem Drucker und legt es in eine Reinigungsanlage. Dort wird das Bauteil mit Isopropylalkohol gereinigt, um die Reste an flüssigem Resin wegzuwaschen.

Aushärten im UV-Ofen

Nach dem Trocknen entfernt der 3D-Techniker das Bauteil von der Druckplatte. Die Stützmaterialien bricht oder schneidet er manuelle ab. In einem UV-Ofen mittels UV-Strahlung und Wärme härtet das Bauteil vollständig aus und erhält somit seine finalen Materialeigenschaften.

Nachbearbeitung

Die Verbindungsstellen zwischen Stützmaterial und Bauteil muss man von Hand schleifen. Zum Schluss behandelt man da  Bauteil mit einem Spezialöl, um Schleifspuren zu entfernen und die Oberfläche und Materialfarbe an den Rest des Bauteils anzugleichen.